

Taylor Da Silva^{1,2}, Yu-Hsuan Huang¹, Ahmed Kabil^{1,3,4}, Michael Hughes^{1,3,4}, Kelly McNagny^{1,3,4}, Tillie Hackett⁵, Hugh Kim^{1,6,7}

¹Centre for Blood Research, UBC; ²Department of Pathology and Laboratory Medicine, UBC; ³Biomedical Research Centre, UBC; ⁴School of Biomedical Engineering, UBC; ⁵Centre for Heart Lung Innovation, UBC & SPH; ⁶Department of Biochemistry and Molecular Biology, UBC; ⁷Faculty of Dentistry, UBC

Background

Asthma pathophysiology

- Chronic inflammatory lung disease that affects over 3 million Canadians
- Interleukin-33 (IL-33), interleukin-6 (IL-6), interleukin-8 (IL-8), and thymic stromal lymphopoietin (TSLP) drive inflammation in asthma (fig. 1)

Platelets in asthma

- Platelets play a pro-inflammatory role in multiple diseases
- Platelet factor 4 (PF4) is a proinflammatory chemokine released during platelet activation (fig. 2) and is elevated in asthmatic patients

PF4 knockout mice

- In a papain asthma model, PF4 knockout (PF4 KO) mice exhibited less eosinophil recruitment compared to wild type (WT) mice (fig. 3)
- This suggests that PF4 contributes to eosinophil recruitment

Figure 1. Cytokines that drive inflammation in asthma.

Figure 2. Platelet granule secretion.

Figure 3. Eosinophil recruitment in lungs of PF4 KO mice (n = 4) and WT mice (n = 3) measured by flow cytometry after intranasal exposure to papain (* p < 0.05, unpaired t-test).

Hypothesis & Aims

Hypothesis

PF4 promotes asthma by increasing expression and secretion of IL-6, IL-8, IL-33, and TSLP by human lung fibroblasts (HFLs).

Aims

- I. Compare, via histology, the degree of inflammation and IL-33 staining intensity in the lung tissue of PF4-deficient mice and controls.
- 2. Compare the spatial localization and staining intensity of PF4 and IL-33 in human lung tissue obtained from asthma patients and controls.
- 3. Measure the expression and secretion of IL-33, IL-6, IL-8, and TSLP in HFLs cultured in the presence of recombinant PF4.

Investigating the role of platelet factor 4 (PF4) in asthma

Figures 1, 2, 4, 5 made in BioRender

lung sections. **E)** Colocalization of PF4, IL-33, and fibroblasts (α -SMA) in lungs of papain-treated WT mice.

Figure 7. A) Representative IF images of human control and asthmatic FFPE lung sections stained for DAPI, PF4, IL-33, and a-SMA. B) Quantification of IL-33 and PF4 staining in human control and asthmatic lung sections (* p < 0.05, ** p < 0.01, unpaired t-test). C) Colocalization of PF4, IL-33, and fibroblasts (α -SMA) in a human asthmatic lung.

Figure 8. mRNA expression of IL-6, IL-8, IL-33, and TSLP after A) 6-hour and B) 24-hour stimulation of HFLs with PF4. **C)** Protein secretion of IL-6 and IL-8 after 72-hour PF4 stimulation (* p < 0.05, ** p < 0.01, *** p < 0.001, one-way ANOVA with Dunnett's correction).

- relationship between PF4 and IL-33 in asthma

insights into the pro-inflammatory role of platelets in asthma

Conclusions

• Experimental asthma upregulated IL-33 expression in WT but not PF4-null mice • PF4 and IL-33 expression was upregulated in human asthmatic lungs • PF4 stimulation of HFLs increased IL-6 and IL-8 expression and secretion • Future studies on the effects of PF4 on lung epithelial cells may further elucidate the

Understanding how PF4 affects cytokine production by lung cells will provide mechanistic

Acknowledgements

Michael Smith Health **Research BC**

This work was funded by a Canadian Institutes of Health Research (CIHR) Project Grant and a Michael Smith Health Research BC Scholar Award (to HK).