Role of the Gla-Domain in Phospholipid-Independent Activation of Human Factor X

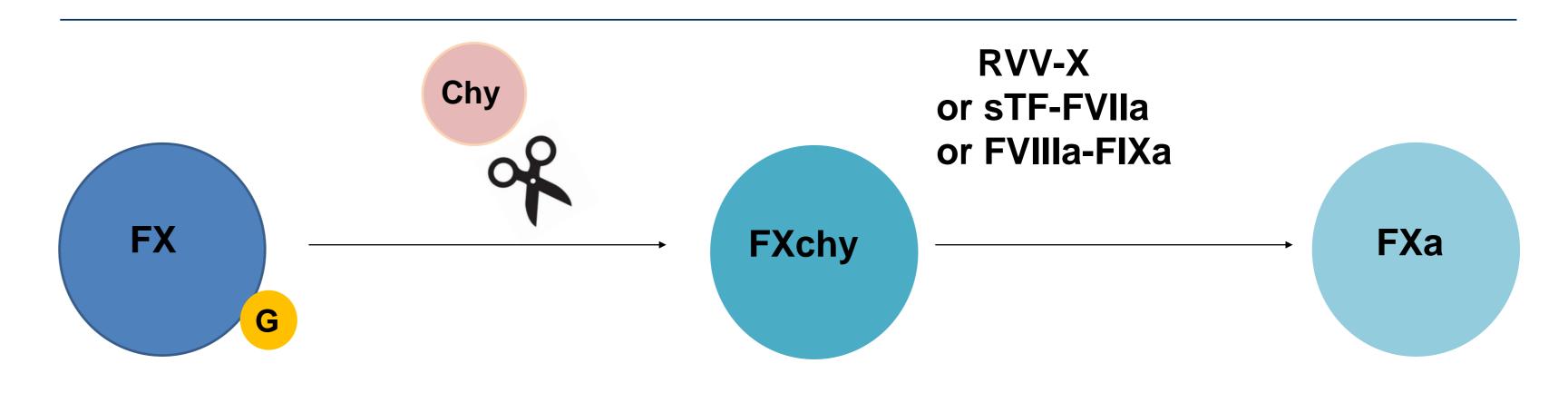
Lihua Hao^{1,2,3}, Alexandra N Witt^{1,2,3}, Edward LG Pryzdial^{1,2,3}

¹Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada. ² UBC Centre for Blood Research, Vancouver, BC, Canada. ³Canadian Blood Services, Medical Affairs and Innovation

Introduction

- Factor (F) X is a critical blood coagulation protein. Once activated to FXa, it ultimately leads to the formation of clot.
- The γ-carboxyglutamic acid (Gla)-rich domain of FX is essential for Ca²⁺ dependent binding to negatively charged phospholipid, optimizing its orientation within tenase complexes for activation.
- Published data indicates that chymotrypsin can cleave the Gla-domain of bovine Factor X without generating additional cleavage¹. Bovine FX lacking

Experimental Design and Methods


- **Chymotrypsin** treatment: Purified human FX (28uM) was treated with chymotrypsin (136nM) at room temperature, Coomassie blue staining was used to identify FX cleavage pattern.
- N-terminal sequencing: Chymotrypsin treated human FX (FXchy) was transferred to PVDF membrane, Coomassie blue stained bands were excised for Edman N-terminal sequencing to detect cleavage site.
- Human FX activation: Three different purified tenases were used for human FX

the Gla domain exhibits a reduced activation rate by RVV in the presence of Ca²⁺ and phospholipids¹. However, studies on Gla-domain-less human FX remain unexplored.

 In this preliminary study, we investigated the role of the Gla-domain in human FX activation under phospholipid-free conditions to ascertain its role in protein-protein interactions.

Hypothesis

 The Gla-domain differentially participates in protein-protein interactions within the various tenases and is required for optimal activation of human FX in phospholipid—free condition. activation in the presence of Ca^{2+} : 1) Russell's Viper Venom FX Activator (RVV-X, a direct activator of FX). 2) soluble recombinant tissue factor-FVIIa, (sTF-FVIIa, extrinsic pathway of coagulation). 3) FVIIIa-FIXa, (intrinsic pathway of coagulation). 2-step chromogenic assay was used to measure FXa generation.

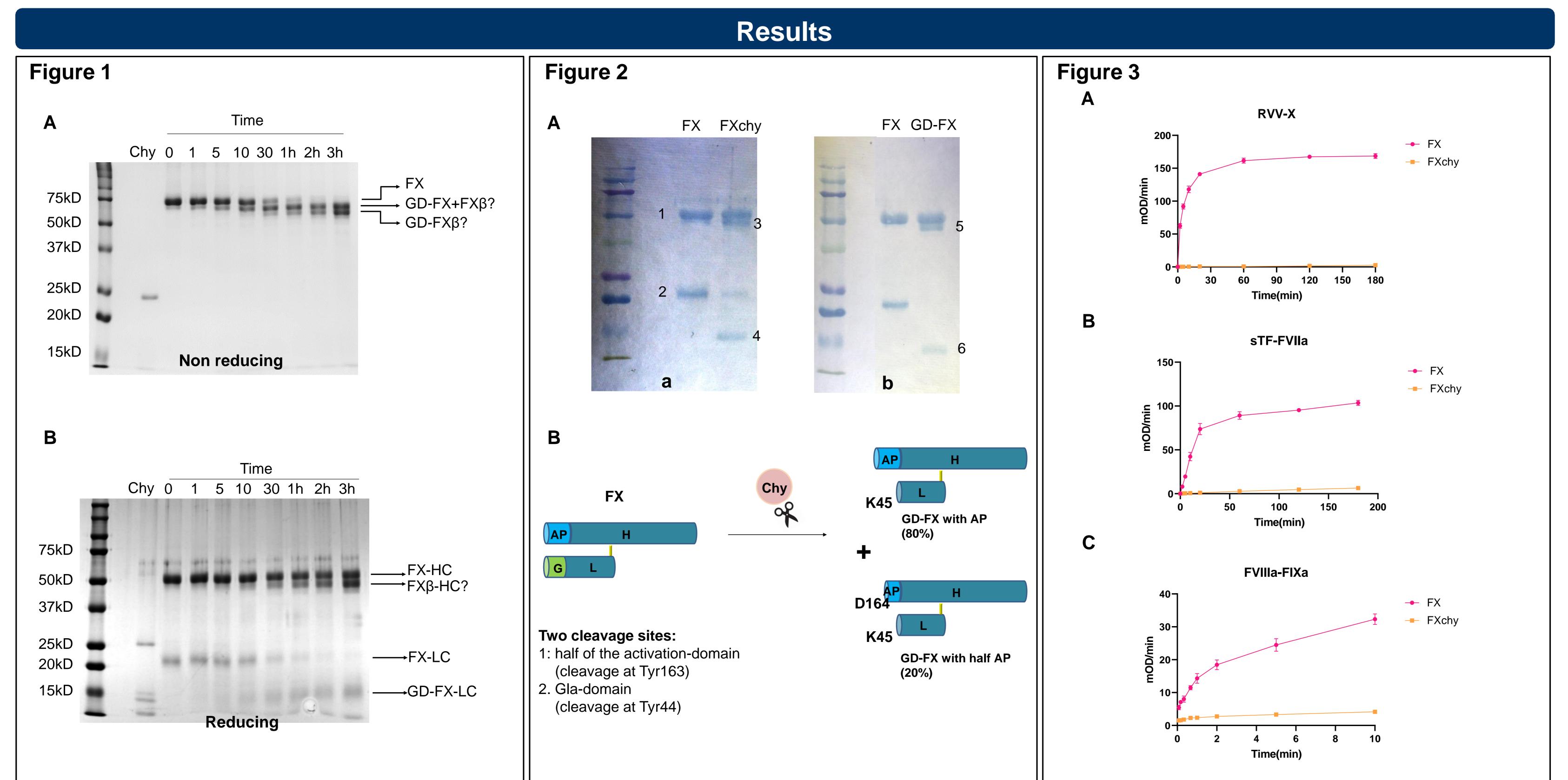


Figure 1. Time-dependent of human FX cleavage by

Figure 2. N-terminal sequencing for Fxchy and commercial || Fig

Figure 3. Comparation of human FX activation by two-step

<i>chymotrypsin.</i> (A) Non-reduced SDS-PAGE analysis of the human FX after chymotrypsin treatment. (B) Reduced SDS-PAGE analysis of the human FX after chymotrypsin treatment. (B) Reduced SDS-PAGE (GD-FX). (A) Representation our laboration of the human FX after chymotrypsin treatment. (B) Reduced SDS-PAGE (GD-FX). (B) Schematic diagram illustrating the construction of the human FX after chymotrypsin treatment.	ab; b: commercial of FX by sTF-FVIIa. (C) Activation of FX by FVIIIa-FIXa.
--	---

Conclusions

- A novel cleavage site was identified in human FX treated with chymotrypsin, excluding the Gla domain.
- The FX Gla-domain participates in the protein-protein interactions within tenases under phospholipid free condition.
- The efficiency of FXa generation was differentially affected, with greatest effect in the order, RVV>sTF/VIIa>VIIIa/Ixa, suggests that the substrate FX presents
 itself uniquely to each tenase, which may have implications for tailoring anticoagulant design for specific branches of coagulation and understanding
 coagulopathy.

Acknowledgments and funding

References

1. Morita T, Jackson CM. Preparation and properties of derivatives of bovine factor X and factor Xa from which the gammacarboxyglutamic acid containing domain has been removed. J Biol Chem. 1986 Mar 25;261(9):4015-23.