

Impact of the N-terminal Finger Domain on the Activity of 3CL-M^{Pro} of SARS-CoV-2 Dipon Saha¹, Eliot Mar¹, Yu Chen², Filip van Petegam², Dieter Brömme^{1,2} ¹Faculty of Dentistry, Department of Oral Biological and Medical Sciences, The University of British Columbia; Vancouver, Canada. ² Faculty of Medicine, Department of Biochemistry and Molecular Biology, The University of British Columbia; Vancouver, Canada.

CBR

INTRODUCTION

The main protease (3CL-M^{pro}) of SARS-CoV-2 is essential for its viral life cycle by cleaving 12 out of 15 processing sites of the non-structural polyprotein ORF1a,b. It was previously found that 3CL-M^{pro} is enzymatically active in dimeric form and that its stability and activity appears to be ensured by the N-terminal finger domain of the monomers. However, the precise effect of the N-finger domain on the enzyme activity and dimerization remains unclear.

METHODS

Various 3CL-M^{pro} N-finger mutants (1-, 2-, 4-, 6-amino acid deletions and 1-amino acid extension) were expressed and their enzymatic activities, dimerization potentials, and selected 3-D structures were characterized.

4. SEC profile of WT-3CL-M^{pro} & N-finger mutants

1 Del-3CL- M^{pro}

RESULTS

1. WT 3CL-M^{pro} and its N-terminal finger domain

-M ^{pro}	GGG-Linker	3X-Flag	Myc-tag	His-tag
M ^{pro}	GGG-Linker	3X-Flag	Myc-tag	His-tag

2 Del-3CL- M^{pro}

- For wild type, N-termini of monomer 2 interact with E166 & F140 of monomer 1 to make a proper active site cleft. Distance between S1 & E166 is 2.8 Å.
- For 1-Add 3CL-M^{pro}, N-termini of monomer 2 and the E166 of monomer 1 bend away from each other. their distance become 15 Å.
- For 1- & 2-Del 3CL-M^{pro} altough N-termini & E166 face each other but distance between them got increase to 5 & 9.1 Å, respectively.
- Modifications of the N-terminus significantly alters the binding site geometry at the S1 site of 3CL-M^{pro} which may prevent the cleavage of the Q-S substrate bond

6. Impact of N-termini on S2 subsite in Crystal Structure of WT 3CL-M^{pro} & N-finger mutant dimers

2-Del 3CL-M^{pro}

NH₂-GFRKMAF

3CL

NH₂-FRKMAF 3CL-M^{pro} GGG-Linker 3X-Flag Myc-tag His-tag

4-Del 3CL-M^{pro}

NH₂-KMAF 3CL-M^{pro} GGG-Linker 3X-Flag Myc-tag His-tag

6-Del 3CL-M^{pro}

NH₂-AF 3CL-M^{pro} GGG-Linker 3X-Flag Myc-tag His-tag

3. Kinetic Analysis of WT-3CL-M^{pro} & N-finger mutants using substrate representing the cleavage site between NSP4 and NSP5 (3CL-M^{pro}) from the replicon polyprotein

Michaelis-Menten kinetic analysis of WT-3CL-M^{pro} variants using a NSP4-NSP5 cleavage site substrate

- There were no differences in the elution volume between the WT & N-finger mutants 1-, 2-, 6- Del 3CL-M^{pro} as well as the 1-Add variant, suggesting no effect on the dimerization status.
- For 4-Del 3CL-M^{pro,} the elution volume shifted 1 ml (15.56 ml), compared to WT elution volume (14.51 ml), indicating the presence of monomer conformation.

5. Localization of N-termini in Crystal Structure of WT 3CL-M^{pro} & N-finger mutant dimers

1-Del-3CL-M^{pro}

2-Del-3CL-M^{pro}

• N-termini has distal impact on the S2 subsite as well.

• For WT, distance between S46 of S2 subsite & N142 of S1 subunit is 7.2 Å. For 1

MCA-AVLQ-SGFR{Lys(Dnp)}RR							
WT-3CL- Mpro	15.2 ± 3	0.6 ± 0.05	54,464 ± 9,286				
1-Add-3CL- M ^{pro}	51 ± 7	0.04 ± 0.005	952 ± 111				
1-Del-3CL- M ^{pro}	62 ± 10	0.1 ± 0.01	$1,799 \pm 394$				
2-Del-3CL- M ^{pro}	56 ± 5	0.06 ± 0.01	1,108 ± 239				
4-Del-3CL- M ^{pro}	N/A	N/A	No activity				
6-Del-3CL- M ^{pro}	N/A	N/A	No activity				

For 1- and 2-amino acid deletin or one amino acid extension N-finger variants:

- K_m values increased 3- to 4-fold compared to WT enzyme.
- k_{cat} values decreased 6- to 10-fold compared to WT enzyme.
- k_{cat}/K_m decreased more than 95% compared to WT enzyme.

4- and 6-amino acid deletion variants were inactive

Analysis was done in triplicates.

Add-3CI-M^{pro} it becomes 9 Å. For 1 & 2 -3CI-M^{pro} that distance reduced to 6.9 & 6.8 Å respectively.

 For WT, distance between L50 & Q189 of S2 subsite is 3.1 Å. For 1 Add-3CI-M^{pro} it becomes 3.6 Å. For 1 & 2 -3CI-M^{pro} that distance reduced to 3.7 & 4 Å respectively.

CONCLUSIONS

- Deletions of up to 2 amino acids and the extension by 1 amino acid resulted in the loss of more than 95% of the activity, whereas 4 and 6 amino acid deletion resulted in the almost complete loss of the protease activity.
- With the exceptions of the 4-Del 3CL-M^{pro} variant, all other mutant proteins remained as dimers as shown by gel filtration.
- Structural analysis of the 1- and 2-amino acid deletions and the 1-amino acid extension variants showed that the dimer is formed through the same N-terminaldomain interactions as that in the wild type enzyme but significantly alters the S1 subsite

ACKNOWLEDGEMENTS

Supported by the Canadian Institutes of Health Research (CIHR) and Natural Sciences and Engineering Research Council of Canada (NSERC). The 3CL-M^{pro} plasmid was a generously provided by Prof. Overall.