
Methodology
Objective 1: Design and characterization of photopolymerizable 
Gelatin methacryoloyl (GelMA) hydrogel. 
• Photoinitiator (ruthenium (Ru) and sodium persulfate (SPS)2 in 

1:10 ratio) was used to polymerize GelMA hydrogels through the 
exposure to blue light (𝛌 = 450 nm, 60s, 50 mW). 

• Crosslinking efficiency of hydrogels was evaluated by calculating 
sol fraction (SF) parameter using the Equation 1.

((m initial, dried – m dry)/ m dry ) x 100%
• Crosslinking density (polymer chain density) of hydrogels was 

evaluated by calculating the equilibrium swelling ratio (SR) using 
Equation 2.

(m swollen – m dry)/ m dry

• An impact of different parameters (GelMA type and 
concentration, Ru/SPS concentration) on SF and SR values of 
hydrogels was explored.

Objective 2: Evaluate biocompatibility of GelMA hydrogels and 
axonal growth in 3D cell culture.
• Indirect cytotoxicity test was performed on SH SY5Y 

neuroblastoma cells using hydrogels with high and low sol 
fraction values according to the ISO protocol3. 

• Dorsal root ganglion (DRG) explants were encapsulated in 
GelMA 6% 0.2/2 Ru/SPS hydrogels in a SCI-on-a-chip PDMS 
microdevice, and the growth of neurites in the hydrogel was 
tracked for 14 days.

Results

• Viability levels of SH SY5Y cells treated 
with media extracts from GelMA
hydrogels were above 70% level 
indicating the absence of cytotoxicity3.

• DRG demonstrated the growth of neuron 
extensions in GelMA hydrogels for 2 
weeks of 3D cell culture. 

Hydrogel characterization
• GelMA hydrogels prepared using type A (porcine) gelatin had significantly higher crosslinking 

efficiency (p=0.0023) compared to type B (bovine) GelMA, as well as higher crosslink density 
(SR=18.5 and 33.4 respectively, p<0.001).  

• Increasing GelMA concentration had a significantly higher impact on SF value (p=0.0047) 
compared to the Ru/SPS concentration (p=0.15) and improved hydrogel crosslinking efficiency.

• Increasing GelMA and Ru/SPS concentration decreased SR value of hydrogels and improved 
crosslinking density.
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Figure 2. Cell viability levels of SH SY5Y cells treated with cell culture media extracts from GelMA hydrogels crosslinked using 0.1/1 or 0.3/3 mM 
Ru/SPS, or normal culture media (untreated group), or sodium dodecyl sulfate (SDS) 10 mM solution (negative control) (a); optical microscopy of 
DRGs growing in 6% GelMA type A 80%DoF hydrogels crosslinked using 0.2/2 mM Ru/SPS via 60s exposure to 450 mW at 50mW (b); 
fluorescent microscopy of DRGs following staining with anti-beta III tubulin, scale bar represents 500 um (c). 
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Figure 1. Type A GelMA with 80% degree of functionalization (DoF) allows to crosslink 6% GelMA hydrogels more efficiently compared to the type 
B GelMA with 80% DoF (a); surface contour plot representing interactions between two concentration parameters (GelMA and Ru/SPS) and their 
impact on SF value in type B GeMA hydrogels (b); higher GelMA and Ru/SPS concentrations lead to a statistically significant decrease in the SR 
of type B GelMA hydrogels.
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Background and motivation
• More than 86,000 people in Canada live with 

a spinal cord injury (SCI)1.
• Individuals with SCI suffer from the partial or 

complete loss of mobility, physiological and 
sensory functions. 

• The lack of regeneration at the injury site is 
caused by inflammation, formation of a cavity 
and a glial scar. 

• Neuroregenerative therapies hold promise in 
restoring the structural and functional integrity 
of the spinal cord.

• They include biomaterials which could be 
injected at the injury site and provide a 
supportive substrate for axonal growth. 

• Hydrogel biomaterials can be fabricated using 
photopolymerization reaction that offers fast 
hydrogel formation, and an easy temporal 
and spatial control over the reaction.  
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Aim
To develop a hydrogel-based 

biomaterial that can be injected at the 
site of SCI to create a permissive 

environment for axonal regeneration.

b

c

c

Conclusions
• Crosslinking efficiency and density of GelMA hydrogels can be easily tuned through the 

variations in hydrogel composition parameters.
• DRG demonstrated the growth of neuron extensions in GelMA hydrogels for 2 weeks of 3D cell 

culture.
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