

Development of Macromolecular Iron Chelators Capable of Eradicating Biofilms

<u>Arshdeep Gill^{1,3}</u>, Elijah Tongol² and Jayachandran N. Kizhakkedathu*^{1,2,3,4}

Centre for Blood Research¹, Department of Pathology and Laboratory Medicine², and Department of Chemistry³, School of Biomedical Engeneering⁴, University of British Columbia, Vancouver, BC

Introduction	Results
Millions of resistant nosocomial infections occur every year Severe lack of new antibiotics being developed + biofilms confer even more resistance These infections become systemic & require harsher antibiotics →worse side-effects	Effect of Molecular Weight of Chelators on Inhibition and Eradication of S. <i>aureus</i> Biofilm
 Our method takes advantage of iron & its role in infection. Upon infection → war for iron acquisition between the host & bacteria Bacteria secrete small iron binding molecules, <i>siderophores</i>, to bind + uptake iron Siderophores vary in structure, size, and K_{complex}. Iron → essential nutrient for most bacterial metabolisms Iron sequestration should limit/eradicate bacteria growth 	3. Biofilm inhibition of S. aureus in presence of macrochelators of 2 different molecular weights (100kDa and 31kDa respectively) at different concentrations $\begin{bmatrix}100\\140\\3\\140\end{bmatrix}$
 Iron sequestration has been attempted with various siderophores Literature results poor Easy uptake & high dosage for tested small chelators Macromolecular approaches limit uptake complex synthesis + solubility issues 	

- Ideal macrochelator requirements:
 - Be able to compete with siderophores (K_{complex} between 10³⁰ to 10⁴⁰)
 - Not be up-taken by bacteria
 - Won't harm host
 - Highly soluble
 - Easily Synthesized
- Our Approach:
 - High-molecular weight polymeric scaffold (Hyper-Branched Polyglycerol, HPG) conjugated to a modified high-affinity iron chelator, HBEDS
 - Investigated inhibition/eradication of biofilms + effect of molecular weight of macrochelator

• 31kDa variant seems to perform much better at biofilm inhibition than the 100kDa variant.

4. Biofilm eradication of S. aureus in presence of macrochelators of 2 different molecular weights (100kDa and 31kDa respectively) at different concentrations

100kDa variant is more effective than the 31kDa variant at lower concentrations.

Effect of Scaffold Molecular Weight on Diffusion of Macrochelator into Biofilm

5. Confocal study of polymer scaffold diffusion into biofilm after 16 hours

• Structure HPG-HBEDS conjugates. Black is the HPG scaffold. Red is the conjugated HBEDS chelator

Methods

- Library of macrochelators created by conjugating hyperbranched polyglycerol (HPG) (100kDa and 31kDa) to a modified small molecule chelator, *HBEDS*, via reductive amination
- Macrochelators characterized via NMR, IR, & UV-Vis spectroscopy to confirm conjugation & number of HBEDS groups
- S. aureus lux strain (Xen36 Lux) was main strain studied
 - Biofilm eradication assays performed by growing a biofilm first (100ul of 10⁶
 CFU culture) for 24 hours in polypropylene 96 well plate in 50% TSB media
 - Media was drained, water washed 3x, & treated with macrochelator
 - Crystal violet assay conducted as described in literature
 - For inhibition assays, conjugate was added with bacteria on day one
- Modified eradication protocol used for confocal studies with syto9 stain for imaging
 - Our molecules labelled with AZDye 405 cadaverine via reductive amination.

eradication

S. aureus

Control

100K-136G

Data normalized to control

ullet

Error bars represent standard deviations of 3 biological replicates, N=3

Untreated Control

100k-HPG Treatment

- 31k-HPG Treatment
- Clearly shown that 31kDa scaffold penetrates biofilm while 100kDa scaffold does not

Conclusions

- Our macrochelators have biofilm eradication properties against MRSA and *S. aureus*.
- 31kDa conjugate was much less efficient
- 100 kDa backbone did not penetrate the biofilm
- 31 kDa backbone penetrated the biofilm but also inserted itself underneath
 - Biofilm penetration may account for differences in respective eradication abilities
- Studies show importance of further understanding the microenvironment of biofilms in order to effectively combat them

Results

Destruction of Pre-formed Biofilms

1. Fluorescence Microscopy of S. aureus biofilm after conjugate treatment

A) Control B) 100K-136G treatment

 Image shows reduction in biofilm after conjugate treatment relative to untreated control Conjugate exhibited biofilm killing against both *S. aureus* and MRSA of up to 75% & 94%, respectively

0.20-

0.15-

0.10-

0.05-

MRSA

Control

100K-136G

2. Crystal violet assay shows biofilm

• More studies underway on exploring these macrochelators further in the context of biofilm eradication both as solo therapeutics or as adjuvants.

References and Acknowledgements

1. Abbina, S.; Gill, A.; Mathew, S.; Abbasi, U.; and Kizhakkedathu, J.N.; ACS Applied Materials & Interfaces 2020 12 (34), 37834-37844

Contact: jay@pathology.ubc.ca (JNK) ; gill@chem.ubc.ca (AG)