

¹Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, M5S 1A8, Canada. ²Keenan Research Centre, Department of Laboratory Medicine, St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada. ³Toronto Platelet Immunobiology Group (TPIG), Toronto, ON, M5B 1T8, Canada. ⁴Canadian Blood Services, Centre for Innovation, Ottawa, ON, K1G 4J5, Canada.

- neonatal disorder¹
- effectively prevented through the
- antibody-mediated immune suppression $(AMIS)^3$
- there is no prevention for other clinically relevant antigens⁴
- be a leading cause of fetal anemia
- RBC alloimmunization is required to address these issues
- shown to influence immunogenicity⁵

- Design a mouse model that allows us to alter the antigen density of our model antigen
- Investigate the relationship between antigen

ANTIGEN DENSITY CAN TIP THE BALANCE BETWEEN IMMUNE SUPPRESSION AND ENHANCEMENT IN A MOUSE MODEL RELATED TO HEMOLYTIC DISEASE OF THE FETUS AND NEWBORN

Hanna Wabnitz¹⁻³, Yoelys Cruz-Leal²⁻⁴ and Alan Lazarus¹⁻⁴

hanna.wabnitz@mail.utoronto.ca

		<u>Results</u>	
density			
	(B)		
			HEL Antigen Level
		HEL ^{med} - RBCs	3657 ± 163
		HEL ^{hi} - RBCs	12402 ± 377

grey area in panel B and E represent control mice that only received the highest concentration of anti-HEL pAb to determine how much residual antibody can be detected at each timepoint.

Conclusion

• Results may have important clinical implications as anti-D administration is based upon the size of the fetal bleed rather than fetal antigen density • Administering insufficient amounts of anti-D could potentially enhance the immune response rather than suppress it • Fetal antigen density should be considered when determining the amount of anti-D that is being administered

Acknowledgements & References

Blood

I would like to thank the Lazarus lab and the St. Michael's Hospital Vivarium staff for their support with this project. I would also like to thank the Canadian Blood Services for their funding.

St. Michael's Inspired Care. Inspiring Science.

